Enterprise software vendor Epicor on Wednesday said it had acquired Smart Software, a provider of cloud-based, AI-driven inventory planning and optimization (IP&O) applications.
According to Austin, Texas-based Epicor, the move accelerates its delivery of ERP solutions that provide practical application of AI across the spectrum of business operations for the make, move, and sell industries.
“In today’s fast-paced and constantly evolving supply chain landscape, effective inventory management is critical for success,” Epicor CEO Steve Murphy said in a release. “The Smart Software acquisition further accelerates our focus in transforming traditional ERP from a system of record to a system of action, giving Epicor customers AI-powered capabilities to turn inventory into a competitive asset that helps drive up customer service levels and drive down costs.”
Smart Software says its technology uses probabilistic AI and machine learning models to deliver superior forecasting and “what if” analysis. Its models run thousands of simulations of outcomes to deliver precise predictions and avoid unrealistic assumptions, enabling users to better predict demand, stockout risks, and costs. That approach improves forecasting accuracy, helps users identify and correct inventory imbalances, predict future operational performance, and track actuals. Customers also can use “what if” analysis to test and risk-adjust stocking policies to ensure alignment with their strategic objectives, the firm says.
The venture-backed fleet telematics technology provider Platform Science will acquire a suite of “global transportation telematics business units” from supply chain technology provider Trimble Inc., the firms said Sunday.
Trimble's other core transportation business units — Enterprise, Maps, Vusion and Transporeon — are not included in the proposed transaction and will remain part of Trimble's Transportation & Logistics segment, with a continued focus on priority growth areas following completion of the proposed transaction.
Terms of the deal were not disclosed but as part of this agreement, Colorado-based Trimble will become a shareholder in Platform Science's expanded business. Specifically, Trimble will have a 32.5% stake in the newly expanded global Platform Science business and will receive a Platform Science board seat. The company joins C.R. England, Cummins, Daimler Truck, PACCAR, Prologis, RyderVentures, and Schneider as a key strategic investor in Platform Science along with financial investors 8VC, Activant Capital, BDT & MSD Partners, Softbank, and NewRoad Capital Partners.
According to San Diego-based Platform Science, the proposed transaction aims to enhance driver experience, fleet safety, efficiency, and compliance by combining two cutting-edge in-cab commercial vehicle ecosystems, which will give customers access to more applications and offerings.
From Trimble customers’ point of view, they will continue to enjoy the benefits of their Trimble solutions, with the added flexibility of the Virtual Vehicle platform from Platform Science. That means Virtual Vehicle-enabled fleets will receive access to the Virtual Vehicle Marketplace, offering hundreds of new and expanded applications, software, and solution providers focused on innovating and improving drivers' quality of life and fleet performance.
Meanwhile, Platform Science customers will enjoy the added choice of Trimble's remaining portfolio of transportation solutions which will be available on the Virtual Vehicle platform, the partners said.
"We believe combining our global transportation telematics portfolio with Platform Science's will further advance fleet mobility and provide our customers with a broader portfolio of solutions to solve industry problems," Rob Painter, president and CEO of Trimble, said in a release. "Increased collaboration between the new Platform Science business and Trimble's remaining transportation businesses will enhance our ability to provide positive outcomes for our global customers of commercial mapping, transportation management, freight procurement, and visibility solutions. This deal will result in significant synergies along with tremendous opportunities for employees to continue to grow in a more-competitive business."
The acquisition comes just five months after Platform Science raised $125 million in growth capital from some of the biggest names in freight trucking, saying the money would help accelerate innovation in the commercial transportation sector.
Nearly one-third of American consumers have increased their secondhand purchases in the past year, revealing a jump in “recommerce” according to a buyer survey from ShipStation, a provider of web-based shipping and order fulfillment solutions.
The number comes from a survey of 500 U.S. consumers showing that nearly one in four (23%) Americans lack confidence in making purchases over $200 in the next six months. Due to economic uncertainty, savvy shoppers are looking for ways to save money without sacrificing quality or style, the research found.
Younger shoppers are leading the charge in that trend, with 59% of Gen Z and 48% of Millennials buying pre-owned items weekly or monthly. That rate makes Gen Z nearly twice as likely to buy second hand compared to older generations.
The primary reason that shoppers say they have increased their recommerce habits is lower prices (74%), followed by the thrill of finding unique or rare items (38%) and getting higher quality for a lower price (28%). Only 14% of Americans cite environmental concerns as a primary reason they shop second-hand.
Despite the challenge of adjusting to the new pattern, recommerce represents a strategic opportunity for businesses to capture today’s budget-minded shoppers and foster long-term loyalty, Austin, Texas-based ShipStation said.
For example, retailers don’t have to sell used goods to capitalize on the secondhand boom. Instead, they can offer trade-in programs swapping discounts or store credit for shoppers’ old items. And they can improve product discoverability to help customers—particularly older generations—find what they’re looking for.
Other ways for retailers to connect with recommerce shoppers are to improve shipping practices. According to ShipStation:
70% of shoppers won’t return to a brand if shipping is too expensive.
51% of consumers are turned off by late deliveries
40% of shoppers won’t return to a retailer again if the packaging is bad.
The “CMA CGM Startup Awards”—created in collaboration with BFM Business and La Tribune—will identify the best innovations to accelerate its transformation, the French company said.
Specifically, the company will select the best startup among the applicants, with clear industry transformation objectives focused on environmental performance, competitiveness, and quality of life at work in each of the three areas:
Shipping: Enabling safer, more efficient, and sustainable navigation through innovative technological solutions.
Logistics: Reinventing the global supply chain with smart and sustainable logistics solutions.
Media: Transform content creation, and customer engagement with innovative media technologies and strategies.
Three winners will be selected during a final event organized on November 15 at the Orange Vélodrome Stadium in Marseille, during the 2nd Artificial Intelligence Marseille (AIM) forum organized by La Tribune and BFM Business. The selection will be made by a jury chaired by Rodolphe Saadé, Chairman and CEO of the Group, and including members of the executive committee representing the various sectors of CMA CGM.
Keep ReadingShow less
Supply chain managers at consumer goods manufacturing companies are tasked with meeting mandates from large retailers to implement item-level RFID.
Supply chain managers at consumer goods manufacturing companies are tasked with meeting mandates from large retailers to implement item-level RFID. Initially these requirements applied primarily to apparel manufacturers and brands. Now, realizing the fruits of this first RFID wave, retailers are turning to suppliers to tag more merchandise.
This is one more priority for supply chain leaders, who suddenly have RFID added to their to-do list. How to integrate tagging into automated production lines? How to ensure each tag functions properly after goods are packed, shipped, and shelved? Where to position the RFID tag on the product? All are important questions to be answered in order to implement item-level RFID. The clock is ticking on retail mandates.
Different products, new RFID considerations
Hangtags, the primary form of apparel product identification, present a relatively easy way to attach an RFID tag. Pressure-sensitive labels likewise can carry an RFID inlay. The inlay, consisting of a microchip and antenna, holds the product’s unique identifying information. This tiny device is activated when the RFID reader passes by it. For nonapparel products, in many cases, there is no way to attach a hangtag. Therefore, a pressure-sensitive RFID label often must be put directly on the product. If the product is packaged in a box, the RFID carrier can be attached to or placed inside the box. Either way involves the use of just the right solutions, including the adhesive, shape, dimension, and placement. Moreover, there must be an efficient way to attach the labels to products. This requires process engineering and sometimes capital investment to integrate RFID labeling into highly automated manufacturing lines.
Metals, liquids, and low-surface-energy (LSE) materials pose hurdles for RFID item tagging. Tag and label inlays cannot be read properly through metals and liquids, and the pressure-sensitive labels do not always stick well to product surfaces containing silicone, vinyl, polyethylene, and polystyrene. Very small items are also difficult to tag. Metal paint cans, caulk or paste tubes, lipsticks, and reusable water bottles are just a few products that present RFID tagging challenges.
In other cases, it is not so much the product itself that hinders readability but rather the shipping method. For example, it is relatively straightforward to apply an RFID tag or label to a bag of fertilizer. But the fertilizer bags might be stacked 60 deep on a pallet. The pressure is too much. It damages the inlay, killing the tag’s readability. So, RFID tags, which were perfectly fine coming off the production line, are now dead from the stacking pressure.
Solutions and testing
RFID tagging and labeling programs take time to get right. While some manufacturers can set up a successful process in a few weeks or months, for others it can take six months, nine months, a year or longer. Variables influencing implementation time include capital equipment investments, the product types (for example, are the materials, shapes, or surfaces potentially problematic?), label supplier capacity and capabilities, and third-party testing rounds.
The good news is that best practices are being refined every day to incorporate RFID on difficult-to-tag products. A case in point is finding answers to RFID-inlay readability issues on metal or liquid products. There are ways to attach an RFID label to the product’s lid or cap.
The University of Auburn RFID Lab is the de facto U.S. authority on all things retail RFID. Through its ARC program, the lab works with end users to make sure RFID tags meet or exceed their required performance and quality levels. Walmart, for example, requires its suppliers to source from Auburn RFID Lab’s ARC program-approved inlay companies. “ARC is a test system and database that stores comprehensive performance data of in-development and market available RFID tags,” according to the lab’s website. “ARC has been working with end users to translate RFID use cases into specific levels of performance in the ARC test environment.”
High-quality RFID tags and labels are at the heart of it all. The following are some considerations to keep in mind when choosing an RFID tag and label provider:
What are their quality control and testing capabilities? Can they confirm that every tag is readable? Do they have software to verify that UPC and RFID information match up? Do they possess familiarity with Auburn’s RFID Lab approval process?
What is their capacity? How many thousands or millions of inlays do they create per day? Are there minimum order quantities?
What are their order management and shipping processes like? What is their delivery speed? How easy are they to order from? Where are their print facilities located?
Do they offer customization? Do they possess specialized equipment? Can they die cut irregular shapes, including very small dimensions? Do they possess adhesive expertise and application equipment? Do they have solutions for metal, liquid, and other difficult-to-tag items? Are they able to configure label rolls to work on automatic label dispensers?
It takes trial and error to implement RFID item tagging for nonapparel products. Effective, compliant programs do not manifest overnight. Collaboration with experienced label providers and the Auburn RFID Lab will help manufacturers overcome even the most complex RFID tagging challenges. There will be a roadmap to success, and the results in the form of better inventory visibility, swifter sell-through, and stronger sales will be well worth it.
Economic activity in the logistics industry expanded in August, though growth slowed slightly from July, according to the most recent Logistics Manager’s Index report (LMI), released this week.
The August LMI registered 56.4, down from July’s reading of 56.6 but consistent with readings over the past four months. The August reading represents nine straight months of growth across the logistics industry.
The LMI is a monthly gauge of economic activity across warehousing, transportation, and logistics markets. An LMI above 50 indicates expansion, and a reading below 50 indicates contraction.
Inventory levels saw a marked change in August, increasing more than six points compared to July and breaking a three-month streak of contraction. The LMI researchers said this suggests that after running inventories down, companies are now building them back up in anticipation of fourth-quarter demand. It also represents a return to more typical growth patterns following the accelerated demand for logistics services during the Covid-19 pandemic and the lows of the recent freight recession.
“This suggests a return to traditional patterns of seasonality that we have not seen since pre-COVID,” the researchers wrote in the monthly LMI report, published Tuesday, adding that the buildup is somewhat tempered by increases in warehousing capacity and transportation capacity.
The LMI report is based on a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).