Victoria Kickham, an editor at large for Supply Chain Quarterly, started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for Supply Chain Quarterly's sister publication, DC Velocity.
Growth slowed in the logistics sector in February as the Logistics Manager's Index (LMI) slipped to the lowest level in its three-year history, according to the latest LMI report, released Tuesday.
The LMI slowed to a reading of 52.6, down 1.5 percentage points compared to January and down more than 10 percentage points compared to February 2019. Despite the slowing, the LMI remained in growth territory. An LMI reading above 50 indicates growth in the logistics sector; a reading below 50 indicates contraction.
Transportation prices and inventory levels contracted during the month, indicating a supply chain slowdown that may be linked to effects from the coronavirus outbreak, researchers said. LMI researcher Zac Rogers said a February inventory slowdown is atypical, as companies are usually still building up inventory following the holiday peak season.
"I do think we are seeing some coronavirus [effects], especially in transportation and inventory levels," said Rogers, assistant professor of supply chain management at Colorado State University. "Inventory levels being down again, for three out of [the last] four months, seems notable to me."
Rogers pointed to a spike in inventory levels in January that he said typically would be sustained through February. He also noted that most LMI respondents took the survey late in February, when concerns about coronavirus disruptions to the supply chain were well underway.
"[What we're seeing in February] is interesting. Whether that's because we don't think we'll be selling a lot in March or because we can't get the inventory here [remains to be seen]," Rogers said. "Normally, we would see inventory start to pick up ... and historically, we'd see a spike in April [as well]. If we keep going down in March and April, we'll know something is going on."
He said declining transportation prices are also a red flag, especially as transportation capacity continues its slow pace of growth. The transportation prices index contracted in February to a reading of 49, down 1.02 points from January and down more than 18 points compared to the year-ago period. The transportation capacity index registered 55.1, down two percentage points from January and eight points from a year-ago, but still showing an increase in the level of transportation services available.
"It's interesting that prices are going down even though we see multiple 3PLs (third-party logistics companies) closing, and capacity growing [very] slowly," Rogers said, emphasizing the narrower than usual gap between transportation prices and capacity in recent months."[In the] past we've seen a negative correlation between capacity and price; now they are pretty close. It's one of our slowest growth rates of capacity, yet prices are still going down."
Solid outlook, despite slowing growth
Despite the concerns, the logistics sector remains in growth mode and respondents say they are optimistic about the future. The LMI's future conditions index registered 63.1 in February, up from 62.8 in January. Rogers pointed to the strong consumer economy, which he said continues to prop up the slowing industrial and manufacturing side. LMI researchers tracked differences in both sectors for the first time in February and found that "downstream" logistics professionals (those in consumer-facing organizations such as retailers) and "upstream" professionals (those working for manufacturers, warehousing companies, and carriers) are, indeed, experiencing different economic effects.
"... the downstream sector seems to be growing at a slightly stronger rate than the upstream sector, registering positive inventory levels and transportation prices," the researchers wrote in February. "This tracks with recent reports showing that consumers are the strong point of the economy relative to manufacturing and industrial output."
The LMI tracks logistics industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
Visit the LMI website to participate in the monthly survey.
The launch is based on “Amazon Nova,” the company’s new generation of foundation models, the company said in a blog post. Data scientists use foundation models (FMs) to develop machine learning (ML) platforms more quickly than starting from scratch, allowing them to create artificial intelligence applications capable of performing a wide variety of general tasks, since they were trained on a broad spectrum of generalized data, Amazon says.
The new models are integrated with Amazon Bedrock, a managed service that makes FMs from AI companies and Amazon available for use through a single API. Using Amazon Bedrock, customers can experiment with and evaluate Amazon Nova models, as well as other FMs, to determine the best model for an application.
Calling the launch “the next step in our AI journey,” the company says Amazon Nova has the ability to process text, image, and video as prompts, so customers can use Amazon Nova-powered generative AI applications to understand videos, charts, and documents, or to generate videos and other multimedia content.
“Inside Amazon, we have about 1,000 Gen AI applications in motion, and we’ve had a bird’s-eye view of what application builders are still grappling with,” Rohit Prasad, SVP of Amazon Artificial General Intelligence, said in a release. “Our new Amazon Nova models are intended to help with these challenges for internal and external builders, and provide compelling intelligence and content generation while also delivering meaningful progress on latency, cost-effectiveness, customization, information grounding, and agentic capabilities.”
The new Amazon Nova models available in Amazon Bedrock include:
Amazon Nova Micro, a text-only model that delivers the lowest latency responses at very low cost.
Amazon Nova Lite, a very low-cost multimodal model that is lightning fast for processing image, video, and text inputs.
Amazon Nova Pro, a highly capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks.
Amazon Nova Premier, the most capable of Amazon’s multimodal models for complex reasoning tasks and for use as the best teacher for distilling custom models
Amazon Nova Canvas, a state-of-the-art image generation model.
Amazon Nova Reel, a state-of-the-art video generation model that can transform a single image input into a brief video with the prompt: dolly forward.
Specifically, 48% of respondents identified rising tariffs and trade barriers as their top concern, followed by supply chain disruptions at 45% and geopolitical instability at 41%. Moreover, tariffs and trade barriers ranked as the priority issue regardless of company size, as respondents at companies with less than 250 employees, 251-500, 501-1,000, 1,001-50,000 and 50,000+ employees all cited it as the most significant issue they are currently facing.
“Evolving tariffs and trade policies are one of a number of complex issues requiring organizations to build more resilience into their supply chains through compliance, technology and strategic planning,” Jackson Wood, Director, Industry Strategy at Descartes, said in a release. “With the potential for the incoming U.S. administration to impose new and additional tariffs on a wide variety of goods and countries of origin, U.S. importers may need to significantly re-engineer their sourcing strategies to mitigate potentially higher costs.”
Grocers and retailers are struggling to get their systems back online just before the winter holiday peak, following a software hack that hit the supply chain software provider Blue Yonder this week.
The ransomware attack is snarling inventory distribution patterns because of its impact on systems such as the employee scheduling system for coffee stalwart Starbucks, according to a published report. Scottsdale, Arizona-based Blue Yonder provides a wide range of supply chain software, including warehouse management system (WMS), transportation management system (TMS), order management and commerce, network and control tower, returns management, and others.
Blue Yonder today acknowledged the disruptions, saying they were the result of a ransomware incident affecting its managed services hosted environment. The company has established a dedicated cybersecurity incident update webpage to communicate its recovery progress, but it had not been updated for nearly two days as of Tuesday afternoon. “Since learning of the incident, the Blue Yonder team has been working diligently together with external cybersecurity firms to make progress in their recovery process. We have implemented several defensive and forensic protocols,” a Blue Yonder spokesperson said in an email.
The timing of the attack suggests that hackers may have targeted Blue Yonder in a calculated attack based on the upcoming Thanksgiving break, since many U.S. organizations downsize their security staffing on holidays and weekends, according to a statement from Dan Lattimer, VP of Semperis, a New Jersey-based computer and network security firm.
“While details on the specifics of the Blue Yonder attack are scant, it is yet another reminder how damaging supply chain disruptions become when suppliers are taken offline. Kudos to Blue Yonder for dealing with this cyberattack head on but we still don’t know how far reaching the business disruptions will be in the UK, U.S. and other countries,” Lattimer said. “Now is time for organizations to fight back against threat actors. Deciding whether or not to pay a ransom is a personal decision that each company has to make, but paying emboldens threat actors and throws more fuel onto an already burning inferno. Simply, it doesn’t pay-to-pay,” he said.
The incident closely followed an unrelated cybersecurity issue at the grocery giant Ahold Delhaize, which has been recovering from impacts to the Stop & Shop chain that it across the U.S. Northeast region. In a statement apologizing to customers for the inconvenience of the cybersecurity issue, Netherlands-based Ahold Delhaize said its top priority is the security of its customers, associates and partners, and that the company’s internal IT security staff was working with external cybersecurity experts and law enforcement to speed recovery. “Our teams are taking steps to assess and mitigate the issue. This includes taking some systems offline to help protect them. This issue and subsequent mitigating actions have affected certain Ahold Delhaize USA brands and services including a number of pharmacies and certain e-commerce operations,” the company said.
Editor's note:This article was revised on November 27 to indicate that the cybersecurity issue at Ahold Delhaize was unrelated to the Blue Yonder hack.
The new funding brings Amazon's total investment in Anthropic to $8 billion, while maintaining the e-commerce giant’s position as a minority investor, according to Anthropic. The partnership was launched in 2023, when Amazon invested its first $4 billion round in the firm.
Anthropic’s “Claude” family of AI assistant models is available on AWS’s Amazon Bedrock, which is a cloud-based managed service that lets companies build specialized generative AI applications by choosing from an array of foundation models (FMs) developed by AI providers like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself.
According to Amazon, tens of thousands of customers, from startups to enterprises and government institutions, are currently running their generative AI workloads using Anthropic’s models in the AWS cloud. Those GenAI tools are powering tasks such as customer service chatbots, coding assistants, translation applications, drug discovery, engineering design, and complex business processes.
"The response from AWS customers who are developing generative AI applications powered by Anthropic in Amazon Bedrock has been remarkable," Matt Garman, AWS CEO, said in a release. "By continuing to deploy Anthropic models in Amazon Bedrock and collaborating with Anthropic on the development of our custom Trainium chips, we’ll keep pushing the boundaries of what customers can achieve with generative AI technologies. We’ve been impressed by Anthropic’s pace of innovation and commitment to responsible development of generative AI, and look forward to deepening our collaboration."
A growing number of organizations are identifying ways to use GenAI to streamline their operations and accelerate innovation, using that new automation and efficiency to cut costs, carry out tasks faster and more accurately, and foster the creation of new products and services for additional revenue streams. That was the conclusion from ISG’s “2024 ISG Provider Lens global Generative AI Services” report.
The most rapid development of enterprise GenAI projects today is happening on text-based applications, primarily due to relatively simple interfaces, rapid ROI, and broad usefulness. Companies have been especially aggressive in implementing chatbots powered by large language models (LLMs), which can provide personalized assistance, customer support, and automated communication on a massive scale, ISG said.
However, most organizations have yet to tap GenAI’s potential for applications based on images, audio, video and data, the report says. Multimodal GenAI is still evolving toward mainstream adoption, but use cases are rapidly emerging, and with ongoing advances in neural networks and deep learning, they are expected to become highly integrated and sophisticated soon.
Future GenAI projects will also be more customized, as the sector sees a major shift from fine-tuning of LLMs to smaller models that serve specific industries, such as healthcare, finance, and manufacturing, ISG says. Enterprises and service providers increasingly recognize that customized, domain-specific AI models offer significant advantages in terms of cost, scalability, and performance. Customized GenAI can also deliver on demands like the need for privacy and security, specialization of tasks, and integration of AI into existing operations.