Skip to content
Search AI Powered

Latest Stories

Key technical considerations for RFID item tagging of nonapparel products

strip of RFID tags

Supply chain managers at consumer goods manufacturing companies are tasked with meeting mandates from large retailers to implement item-level RFID.

Photo courtesy of FineLine Technologies.

Mandatory RFID item tagging is expanding beyond apparel into many other product categories. Is your business ready?

Supply chain managers at consumer goods manufacturing companies are tasked with meeting mandates from large retailers to implement item-level RFID. Initially these requirements applied primarily to apparel manufacturers and brands. Now, realizing the fruits of this first RFID wave, retailers are turning to suppliers to tag more merchandise.

This is one more priority for supply chain leaders, who suddenly have RFID added to their to-do list. How to integrate tagging into automated production lines? How to ensure each tag functions properly after goods are packed, shipped, and shelved? Where to position the RFID tag on the product? All are important questions to be answered in order to implement item-level RFID. The clock is ticking on retail mandates.

Different products, new RFID considerations

Hangtags, the primary form of apparel product identification, present a relatively easy way to attach an RFID tag. Pressure-sensitive labels likewise can carry an RFID inlay. The inlay, consisting of a microchip and antenna, holds the product’s unique identifying information. This tiny device is activated when the RFID reader passes by it. For nonapparel products, in many cases, there is no way to attach a hangtag. Therefore, a pressure-sensitive RFID label often must be put directly on the product. If the product is packaged in a box, the RFID carrier can be attached to or placed inside the box. Either way involves the use of just the right solutions, including the adhesive, shape, dimension, and placement. Moreover, there must be an efficient way to attach the labels to products. This requires process engineering and sometimes capital investment to integrate RFID labeling into highly automated manufacturing lines.

Metals, liquids, and low-surface-energy (LSE) materials pose hurdles for RFID item tagging. Tag and label inlays cannot be read properly through metals and liquids, and the pressure-sensitive labels do not always stick well to product surfaces containing silicone, vinyl, polyethylene, and polystyrene. Very small items are also difficult to tag. Metal paint cans, caulk or paste tubes, lipsticks, and reusable water bottles are just a few products that present RFID tagging challenges.

In other cases, it is not so much the product itself that hinders readability but rather the shipping method. For example, it is relatively straightforward to apply an RFID tag or label to a bag of fertilizer. But the fertilizer bags might be stacked 60 deep on a pallet. The pressure is too much. It damages the inlay, killing the tag’s readability. So, RFID tags, which were perfectly fine coming off the production line, are now dead from the stacking pressure.

Solutions and testing

RFID tagging and labeling programs take time to get right. While some manufacturers can set up a successful process in a few weeks or months, for others it can take six months, nine months, a year or longer. Variables influencing implementation time include capital equipment investments, the product types (for example, are the materials, shapes, or surfaces potentially problematic?), label supplier capacity and capabilities, and third-party testing rounds.

The good news is that best practices are being refined every day to incorporate RFID on difficult-to-tag products. A case in point is finding answers to RFID-inlay readability issues on metal or liquid products. There are ways to attach an RFID label to the product’s lid or cap.

The University of Auburn RFID Lab is the de facto U.S. authority on all things retail RFID. Through its ARC program, the lab works with end users to make sure RFID tags meet or exceed their required performance and quality levels. Walmart, for example, requires its suppliers to source from Auburn RFID Lab’s ARC program-approved inlay companies. “ARC is a test system and database that stores comprehensive performance data of in-development and market available RFID tags,” according to the lab’s website. “ARC has been working with end users to translate RFID use cases into specific levels of performance in the ARC test environment.”

High-quality RFID tags and labels are at the heart of it all. The following are some considerations to keep in mind when choosing an RFID tag and label provider:

  • What are their quality control and testing capabilities? Can they confirm that every tag is readable? Do they have software to verify that UPC and RFID information match up? Do they possess familiarity with Auburn’s RFID Lab approval process?
  • What is their capacity? How many thousands or millions of inlays do they create per day? Are there minimum order quantities?
  • What are their order management and shipping processes like? What is their delivery speed? How easy are they to order from? Where are their print facilities located?
  • Do they offer customization? Do they possess specialized equipment? Can they die cut irregular shapes, including very small dimensions? Do they possess adhesive expertise and application equipment? Do they have solutions for metal, liquid, and other difficult-to-tag items? Are they able to configure label rolls to work on automatic label dispensers?

It takes trial and error to implement RFID item tagging for nonapparel products. Effective, compliant programs do not manifest overnight. Collaboration with experienced label providers and the Auburn RFID Lab will help manufacturers overcome even the most complex RFID tagging challenges. There will be a roadmap to success, and the results in the form of better inventory visibility, swifter sell-through, and stronger sales will be well worth it.

More Stories

SCX_online_forklift_battery_1200x800.jpg

Eight mistakes that will shorten your forklift battery’s life

Forklift batteries power the fleets at the center of facility operations. If your batteries are well-maintained, your team is empowered to drive efficient, sustainable, and productive operations. Given your forklift battery can also be as much as 30% of your forklift’s total cost, taking care of it is crucial not just for its longevity and efficiency, but in creating a safe, productive, and cost-effective facility. Improper battery care can create a financial strain on your company along with plenty of safety hazards.

Pulling from decades of experience helping some of the largest and busiest facilities across the country with their power management challenges, I’m sharing the most common mistakes that can shorten your forklift battery’s life by up to 60% or one to three years.  

Keep ReadingShow less
SCX24_08_low code_1200x800.jpg

Trend watch: Low-code application platforms can transform WMS

More than ever before, supply chain businesses are faced with dynamic conditions due to consumer buying trends, supply chain disruptions, and upheaval caused by other outside forces including war, political instability, and weather conditions. Supply chain companies, including warehouses, must be able to pivot quickly and make changes to operational processes without waiting for weeks or months.

As a result, warehouse management systems (WMS) need to be agile enough to make changes to operational processes and turn on a dime in today’s fast-paced world. Traditional warehouse management systems, however, are rigid and complex, not easy to customize or change. In addition, integrations—especially to modern technologies such as the internet of things (IoT), artificial intelligence (AI), and machine learning—can be problematic.

Keep ReadingShow less
SCX24_online_procurement_1200x800.jpg

Why AI will transform procurement and how it is already doing so

Gartner recently published a report discussing the big changes being wrought by artificial intelligence (AI) for procurement. The analysis begins with some intriguing data points:

  • By 2026, virtual assistants and chatbots will be used by 20% of organizations to handle internal and supplier interactions, and by 2027, 50% of organizations will support supplier contract negotiations with AI-enabled tools.
  • Data literacy and technology skills will be equally as important as social and creative skills (that is “soft skills”) for procurement staff.
  • By 2027, 40% of sourcing events will be executed by nonprocurement staff.
  • By 2029, 80% of human decisions will be augmented—not replaced—by generative AI (GenAI), as humans will maintain their comparative advantages in ingenuity, creativity, and knowledge.

One of the reasons for the forecasted rapid adoption of AI is that the technology seems to respond to a key pressure point on procurement as a function: the lack of staff or staff with the right skills and experience. Staffing concerns are driving procurement organizations to increasingly lean on digital technologies, especially AI and automation, to help. Let’s explore Gartner's argument.

Keep ReadingShow less
SCX24_online_woman_1200x800.jpg

Practical ideas for supporting women in supply chain

In a male-dominated industry like supply chain technology, there is a growing opportunity for women to lean in and contribute their unique skills and perspectives. Research consistently demonstrates that diverse teams outperform less diverse ones, emphasizing the importance of inclusivity and gender diversity within the industry.

According to research by McKinsey & Company, companies with more than 30% female executives are more likely to outperform companies with only 10% to 30% of women leaders. The study also found more gender-diverse companies outperform the rest by 48%.

Keep ReadingShow less