Skip to content
Search AI Powered

Latest Stories

How smart manufacturing can help companies achieve data-driven sustainability

Advanced manufacturing systems can help companies ensure they and their partners are meeting sustainability goals.

Smart_manufacturering_blog.jpg

In the manufacturing industry, enterprises are increasingly examining their production processes and systems to improve sustainability. Specifically, efforts to minimize waste, pollution, and energy consumption are not only growing in popularity with consumers but businesses as well. These efforts also improve operational efficiency, increase a company’s competitive advantage, strengthen brand reputation, and facilitate organizations’ adherence to regulatory guidelines.

Success in achieving these goals will depend on smart manufacturing, which uses advanced technologies to automate business processes, track information throughout product lifecycle, and provide advanced visibility and quality control to enterprise operations. For example, as sustainability is prioritized across the supply chain, organizations will require proper metrics to ensure stakeholders are meeting sustainability goals. Smart manufacturing technologies will help ensure that companies are accurately measuring and tracking their progress against these metrics.


Regulations increase pressure for sustainability metrics

One factor driving the need for manufacturers to implement sustainability metrics is the increasing number of regulations, both domestic and international, requiring companies to integrate sustainability practices into their business operations. This past year, the International Sustainability Standards Board (ISSB), the global body responsible for developing international reporting requirements, issued two reporting standards requiring companies to disclose material information about sustainability and share specific information on climate risks and opportunities. These standards provide a global baseline for organizations to report climate-related issues and impacts on business operations. Though the standards are not explicitly imposed upon organizations or jurisdictions, they do provide a framework for mandatory and voluntary reporting practices. 

Domestically, the Securities and Exchange Commission (SEC) finalized its climate disclosure framework this year, requiring organizations to disclose pollution metrics generated by their company through registration statements and periodic reports . This not only entails greenhouse gas emissions produced by the company’s operations but also indirect emissions, such as energy purchased from utilities. 

Similarly, individual states are increasingly enacting legislation that requires companies to report and monitor their sustainability efforts. For example, California recently signed a landmark mandate for the disclosure of corporate carbon dioxide emissions. As the number of regulations grow, organizations become increasingly responsible for creating and meeting sustainability standards. 

Business advantage to sustainability measurements

Besides the external factors and pressures motivating organizations to examine the environmental impact of their output, there are also internal factors that rationalize implementing sustainability metrics. For example, brand recognition and competitive advantages are additional arguments that support increased attention to reducing waste production and greenhouse gas emissions, improving materials sourcing, and more. In fact, a recent report highlights that 39% of manufacturers reportedly pursue sustainability goals as a competitive differentiator. Improving sustainability efforts not only promotes more efficient processes and decreases waste but also caters to business and consumer interests of sustainably produced goods.

Furthermore, efforts to improve energy management, carbon offsetting, water conservation, waste reduction, and raw material usage all contribute to cost reduction and increased resilience. As manufacturers implement these measurements into their operations, they are also fortifying operations against disruptions, decreasing costs as materials are upcycled and reused, and uncovering new avenues for efficiency and innovation. 

How to accurately measure and improve sustainability in manufacturing

Now, achieving these goals will require a robust data infrastructure that allows manufacturers to aggregate and analyze current performance metrics and connect information across systems and machines. This data infrastructure can be achieved by using manufacturing execution systems (MES) and enterprise resource planning (ERP) systems, quality management systems (QMS), supply chain planning (SCP), and the industrial internet of things (Industrial IoT). The following provides examples of how these systems can help company collect information related to waste production, material usage, and quality control:

  • Industrial IoT sensors embedded in machinery allow communication between devices to gather insights on equipment performance and provide feedback on machine health. Some can even report on natural resource usage or greenhouse gas emissions emitted during production.
  • MES can monitor energy consumption across organizations in real-time, identifying idling equipment or excess material usage. They can also monitor equipment health and provide proactive maintenance suggestions to avoid downtime. Recognizing equipment malfunction is critical to sustainability as it reduces potential wasted materials and energy 
  • QMS can provide constant analysis of potential areas for improvement and consistent control over production. As such, they can help eliminate waste and identify defects throughout the manufacturing process. 
  • SCP can forecast demand and inventory, optimize transportation routes, provide sourcing information on potential partners, and facilitate closed-loop systems to recycle products. Accurate forecasting and optimized transportation lead to more efficient material usage and route planning, resulting in lower resource consumption and emission production.
  • ERP systems can collect data on energy consumption and material utilization. They can also be used to create customized dashboards and reports to follow key performance indicators (KPIs) to assess organization performance against sustainability goals.

By fostering efficient operations and monitoring performance, these technologies allow organizations to improve planning and execution, which helps them to reduce waste and maximize output. The manufacturing systems described above along with advanced technology—such as smart devices, machine learning, artificial intelligence, blockchain and digital twins—provide real-time data that can be placed into predictive models to proactively predict events such as unplanned stoppages and repairs, fluctuations in energy consumption, and material or resource needs. These technologies can also develop simulations to test different scenarios that may help manufacturers decrease certain environmental impacts. They can also provide efficient tracking of products, components, or materials throughout their lifecycle. 

A recent survey found that 65% of manufacturers claim that technology plays a significant role in achieving sustainability goals. Managing sustainable manufacturing practices begins with technology that provides data-driven insights. As manufacturers realize that sustainability goals are not just connected to compliance but performance, they will begin to seek out these platforms that monitor waste production, emission reduction, raw material usage, and product quality. In doing so, they will also benefit from the improved efficiency and increased savings that accompany these sustainability goals.

Recent

More Stories

digital chain links

How to evaluate blockchain for your supply chain

In 2015, blockchain (the technology that makes digital currencies such as bitcoin work) was starting to be explored as a solution for supply chains. It promised cost savings, increased efficiency, and heightened transparency, among other benefits. For that reason, many companies were happy to run pilots testing blockchain for themselves. Today, these small-scale projects have been replaced by large-scale enterprise adoption of blockchain-based supply chain solutions. There are plenty of choices now for blockchain supply chain products, platforms, and providers. This makes the option to use blockchain available now to nearly everyone in the sector. This wealth of choice does, however, make it more difficult to decide which blockchain integration is best (or, indeed, if your organization needs to use it at all). To find the right blockchain, companies need to consider three factors: cost, sustainability, and the ultimate goal of trying new technology.

Choosing the right blockchain for an enterprise supply chain begins with the most basic consideration: cost. Blockchains work by securely recording “transactions,” and in a supply chain, those transactions are essentially database updates. However, making such updates has varying costs on different chains. If a container moves locations, that entry is updated, and a transaction is recorded. Enterprises need to figure out how many products, containers, or pieces of information they will process daily. Each of these can be considered a transaction. Now, some blockchains cost not even $1 to record a million movements. Other chains can cost thousands of dollars for the same amount of recording. Understanding the amount of activity you will need to record against the cost of transactions is the first place for an enterprise to start when considering blockchain. Ask the provider which blockchain their product is built on, and its average transaction cost. This will help you find the most cost-effective product or integration.

Keep ReadingShow less

Featured

A series of blocks. The first block is balanced on the edge so that it shows both "glob" and "loc" the rest of the blocks read "alization" to create the sense of both "globalizaiton" and "localization."

Balancing global sourcing and local availability can improve supply chain resiliency and sustainability.

Prazis Images via Adobe Stock

“Glocalization”: The path for navigating a volatile global supply chain

Over the last two decades, globalization became more intense, and with it, competition among companies and their supply networks. The constant fight for new sources of raw materials at a more competitive cost, the development of suppliers in low-cost countries, and the ability to manage logistic chains have become part of the routine of strategic sourcing.

In today's economic environment, companies are continuously pressured to reduce costs to combat slower growth; to offset increases in material prices, energy, and transportation; and to counterbalance various other pressures, such as inflation. Despite these issues and the economic instability worldwide, companies must continue to differentiate themselves and find growth opportunities to compete in the global marketplace. For example, in order to boost revenues and fuel growth, many companies are now under as much pressure to reduce product life cycles and speed-to-market as they are to find savings and reduce operational costs.

Keep ReadingShow less
A rusty blue chain crosses in front of blue, red, and yellow containers.

Labor strikes can stop supply chains in their tracks unless companies take steps to build up resiliency.

huntspy via Adobe Stock

Strikes and labor negotiations highlight need for resilient supply chains

Strikes and potential strikes have plagued the supply chain over the last few years. An analysis of data from the Bureau of Labor Statistics by the Economics Policy Institute concluded that the number of workers involved in major strike activity increased by 280% in 2023 from 2022. Currently, the U.S. East Coast and Gulf Coast ports are facing the threat of another dockworker strike after they return to the negotiating table in January to attempt to resolve the remaining wage and automation issues. Similarly, Boeing is continuing to contend with a machinists strike.

Strikes, or even the threat of a strike, can cause significant disruptions across the global supply chain and have a massive economic impact. For example, when U.S. railroads were facing the threat of a strike in 2022, many companies redirected their cargo to avoid work stoppages and unhappy customers. If the strike had occurred, the Association of American Railroads (AAR) estimated that the economic impact of a railroad strike could have been $2 billion per day.

Keep ReadingShow less
An illustration of a campaign button that says, "Supply Chain Issues" lays on top of a U.S. flag.

Supply chain professionals should be aware of how the different policies proposed by the U.S. presidential candidates would affect supply chain operations.

Jon Anders Wiken via Adobe Stock

Assessing the U.S. election impact on supply chain policy

For both Donald Trump and Kamala Harris, the revival of domestic manufacturing is a key campaign theme and centerpiece in their respective proposals for economic growth and national security. Amid the electioneering and campaign pledges, however, the centrality of supply chain policy is being lost in the shuffle. While both candidates want to make the supply chain less dependent on China and to rebuild the American industrial base, their approaches will impact manufacturing, allied sectors, and global supply chains much differently despite the common overlay of protectionist industrial policy.

Both Trump’s “America First” and Harris’ “Opportunity Economy” policies call for moving home parts of supply chains, like those that bring to market critical products like semiconductors, pharmaceutical products, and medical supplies, and strengthening long-term supply chain resilience by discouraging offshoring. Harris’ economic plan, dubbed the “New Way Forward,” aims to close tax loopholes, strengthen labor rights, and provide government support to high-priority sectors, such as semiconductors and green energy technologies. Trump’s economic plan, dubbed “New American Industrialism,” emphasizes tariffs, corporate tax cuts, and easing of regulations.

Keep ReadingShow less
AMRs and a drone operate in a warehouse environment. Overlaid are blue lines and data indicating that they are all connected digitally.

Future warehouse success depends on robot interoperability.

Image created by Yingyaipumi via Adobe Stock.

The Urgent Call for Warehouse Robotics Interoperability

Interest in warehouse robotics remains high, driven by labor pressures and a general desire to further automate distribution processes. Likewise, the number of robot makers also continues to grow. By one count, more than 50 providers exhibited at the big MODEX show in Atlanta in March 2024.

In distribution environments, there is especially strong interest in autonomous mobile robots (AMRs) for collaborative order picking. In this application, the AMR meets pickers at the right inventory location, and the workers then place picks in totes on the robot, which then moves on to another location/picker or off to packing, greatly reducing human travel time.

Keep ReadingShow less