In the ever-evolving omnichannel landscape, consumers seamlessly transition among online and offline channels, requiring retailers to provide a unified experience across channels. Having re-engineered their supply chains to meet this challenge, retailers are now deploying artificial intelligence (AI) to take omnichannel retailing to the next level.
A recent survey conducted by the MIT Center for Transportation and Logistics (MIT CTL) examined where AI-driven innovations are having the most impact on omnichannel fulfillment. Figure 1 encapsulates the survey findings. The research is based on replies from more than 130 logistics, warehousing, and supply chain professionals from across the retail industry to an annual online questionnaire. Not surprisingly, respondents ranked demand forecasting as the top domain affected by AI, followed by customer experience, customer service and chatbots, and inventory management. However, AI has a critically important role to play in transforming all the areas ranked, such as warehousing and returns management. Let’s delve into these different roles.
Refining demand forecasting
The survey results indicate that respondents believe that AI applications will have the greatest impact on demand forecasting processes. This transformative technology increases forecast accuracy by incorporating the impact of several layers of complex data as well as the available historical data. Such layers could include weather, special holidays, regional buying habits, demographics, social media activity, online reviews, and the potential impact of planned marketing efforts.
Another major benefit of using AI-powered demand forecasting is that it is more flexible and adaptable compared to traditional methods. Retailers can adjust their forecasts as disruptions and seasonality change market conditions.
Profiting from personalization
Another important application of AI is in personalizing the omnichannel experience. Walmart recently launched a new generative AI search feature that allows customers to search for products by use cases such as for baby showers or Super Bowl parties, rather than by product or brand name. The company can recommend relevant products and offer customers a more personalized and unique shopping experience. This feature provides a more streamlined, intuitive shopping experience.
In fashion retail, companies like Zara are offering “click & try” apps that give customers access to intelligent fitting rooms. Customers select items through a digital interface before trying them on in-store. The rooms use RFID technology to recognize the items brought in, offering options to request different sizes or colors directly from the fitting room. These types of tools improve the customer experience by reducing waiting times in changing rooms and at points of sale. The apps can also enhance the management of in-store inventory. RFID technology provides real-time data on which items are being tried on and their locations, helping to keep inventory counts accurate and up to date. Furthermore, by analyzing which items are tried on most frequently and which are converted into sales, stores can better understand customer preferences and demand, leading to more efficient stock management and replenishment policies.
Elevating customer satisfaction
Customer satisfaction is another key driver of AI implementation in the omnichannel space. Amazon recently launched its Fit Insights AI-powered tool that enhances customers’ buying choices by making size charts from diverse brands more consistent and aggregating product reviews and information on fabric types. L’Oréal’s BeautyGenius virtual beauty advisor delivers similar benefits.
Tools like these seek to both enhance the customer experience and provide a strong marketing message in order to increase product awareness and redirect customers to e-commerce links or stores to find recommended products. There are indirect benefits too, such as reduced return rates and the gathering of relevant data for demand forecasting and inventory management processes.
Optimizing inventory
Providing fulfillmentfor multiple channels and creating a seamless experience requires the best inventory allocation practices. The survey ranks inventory management as the fourth most important area. To strategically position inventory, Walmart has harnessed the power of AI and machine learning-driven inventory management systems, combining years of historical data with macroeconomic trends, large-scale weather patterns, and local demographics. By leveraging this technology, the retailer optimizes the distribution of products across multiple channels, enhancing customers’ seamless shopping experience, especially during peak seasons. The AI helps to ensure that customers have a consistent, uniform experience across all channels. For example, AI-enabled inventory management systems make sure that when a shopper visits a store based on online inventory information, the item is indeed there.
AI can also be used to tackle the challenge of excess and aging inventory. The consumer goods company Unilever is leveraging AI in digital discounting and pricing intelligence to set the best price for discontinued products and move them to retailers where the items are most likely to sell. AI algorithms analyze various factors such as demand trends, a product’s shelf life, and inventory levels to determine optimal discount rates. Thanks to this tool, the company can reduce prices dynamically on products that are nearing the end of their life cycle or are in excess, allowing the company to clear out inventory more effectively. Pricing intelligence then applies advanced analytics and machine learning techniques to gain insights from a wide range of data sources, including market trends, competitor pricing, and consumer behavior. This tool helps Unilever set competitive prices and identify the best retailers and geographic markets for discontinued or excess products.
Streamlining operations
AI is also being used to enhance warehousing operations. Intelligent automation (also known as cognitive automation) has disrupted warehousing by blending robotic process automation with cutting-edge technologies such as AI, augmented reality, and computer vision. For example, the grocery technology company Ocado Group utilizes swarms of robots that operate on a dense 3D grid system, known as “the Hive,” to move crates containing grocery items to picking stations that are typically operated by humans. (This is often referred to as a “goods-to-person system.”) The Ocado Smart Platform (OSP) combines the power of AI, robotics, and automation to manage and optimize these operations. AI is used to control the robot swarms, ensuring efficient traffic management and operational flow within the warehouses. Additionally, and more recently, AI-powered tools like robotic arms equipped with computer vision and sensors are being used to pick and handle diverse items from the inventory. This integration of AI not only contributes to streamlined operations but also increases the speed and accuracy of order fulfillment. In this context, AI integration boosts throughput, reduces order processing times, and informs inventory optimization and allocation decisions for streamlined operations.
Another recent example is the use of autonomous forklifts and AI-powered tools that use machine vision and dynamic planning to unload pallets from a truck and send them directly to the automated storage and retrieval system. Walmart is currently using these autonomous forklifts at its Brooksville, Florida, distribution center and plans to roll them out to four more distribution centers in the next 16 months.
Challenges and barriers
When implementing AI tools, data availability and quality are key to successful implementations. AI tools can manage massive amounts of data and connect relevant customer information with inventory and warehouse management systems. They can also collect information from multiple tiers across the supply chain and external sources. But the quality of the training data used can limit the potential impact of these tools.
Systems integration is another potential barrier to achieving AI’s full potential. Integrating the technology with legacy systems can be challenging, especially in terms of the required investment and infrastructure.
Companies also need to know that incorporating such a disruptive technology into business decisions cannot fully succeed without human-AI collaboration. As explained in a recent article by MIT CTL’s Maria Saenz and Devadrita Nair, humans provide the context, judgment, and adaptability that’s needed when using AI to improve responsiveness in unpredictable, dynamic environments. For this reason, getting the most out of an AI implementation requires that companies pay careful attention to talent development to make sure that their employees have both the necessary soft and hard skills.
What’s next?
Expect a surge in AI utilization in the omnichannel space beyond conventional tools. Companies are increasingly leveraging AI to train associates and introduce virtual assistants, enhancing and augmenting human tasks.
Still, AI’s most striking effects in omnichannel supply chains have yet to unfold. There is immense potential for integrating AI across many supply chain areas, including personalized customer experiences, automated replenishment systems, warehouse management systems, and adjusting store layouts in response to customer demand.
Finally, the industry must not underestimate the critical importance of the right talent. Human understanding of AI tools and the models behind them, coupled with the ability to evaluate outcomes and challenge results with critical thinking, is of crucial importance. Upskilling and reskilling employees to prepare them for transformative change is also imperative.
Editor’s note:To see the full results of MIT’s survey, see the infographic that was published on DC Velocity in February 2024.
Companies in every sector are converting assets from fossil fuel to electric power in their push to reach net-zero energy targets and to reduce costs along the way, but to truly accelerate those efforts, they also need to improve electric energy efficiency, according to a study from technology consulting firm ABI Research.
In fact, boosting that efficiency could contribute fully 25% of the emissions reductions needed to reach net zero. And the pursuit of that goal will drive aggregated global investments in energy efficiency technologies to grow from $106 Billion in 2024 to $153 Billion in 2030, ABI said today in a report titled “The Role of Energy Efficiency in Reaching Net Zero Targets for Enterprises and Industries.”
ABI’s report divided the range of energy-efficiency-enhancing technologies and equipment into three industrial categories:
Commercial Buildings – Network Lighting Control (NLC) and occupancy sensing for automated lighting and heating; Artificial Intelligence (AI)-based energy management; heat-pumps and energy-efficient HVAC equipment; insulation technologies
Manufacturing Plants – Energy digital twins, factory automation, manufacturing process design and optimization software (PLM, MES, simulation); Electric Arc Furnaces (EAFs); energy efficient electric motors (compressors, fans, pumps)
“Both the International Energy Agency (IEA) and the United Nations Climate Change Conference (COP) continue to insist on the importance of energy efficiency,” Dominique Bonte, VP of End Markets and Verticals at ABI Research, said in a release. “At COP 29 in Dubai, it was agreed to commit to collectively double the global average annual rate of energy efficiency improvements from around 2% to over 4% every year until 2030, following recommendations from the IEA. This complements the EU’s Energy Efficiency First (EE1) Framework and the U.S. 2022 Inflation Reduction Act in which US$86 billion was earmarked for energy efficiency actions.”
Economic activity in the logistics industry expanded in November, continuing a steady growth pattern that began earlier this year and signaling a return to seasonality after several years of fluctuating conditions, according to the latest Logistics Managers’ Index report (LMI), released today.
The November LMI registered 58.4, down slightly from October’s reading of 58.9, which was the highest level in two years. The LMI is a monthly gauge of business conditions across warehousing and logistics markets; a reading above 50 indicates growth and a reading below 50 indicates contraction.
“The overall index has been very consistent in the past three months, with readings of 58.6, 58.9, and 58.4,” LMI analyst Zac Rogers, associate professor of supply chain management at Colorado State University, wrote in the November LMI report. “This plateau is slightly higher than a similar plateau of consistency earlier in the year when May to August saw four readings between 55.3 and 56.4. Seasonally speaking, it is consistent that this later year run of readings would be the highest all year.”
Separately, Rogers said the end-of-year growth reflects the return to a healthy holiday peak, which started when inventory levels expanded in late summer and early fall as retailers began stocking up to meet consumer demand. Pandemic-driven shifts in consumer buying behavior, inflation, and economic uncertainty contributed to volatile peak season conditions over the past four years, with the LMI swinging from record-high growth in late 2020 and 2021 to slower growth in 2022 and contraction in 2023.
“The LMI contracted at this time a year ago, so basically [there was] no peak season,” Rogers said, citing inflation as a drag on demand. “To have a normal November … [really] for the first time in five years, justifies what we’ve seen all these companies doing—building up inventory in a sustainable, seasonal way.
“Based on what we’re seeing, a lot of supply chains called it right and were ready for healthy holiday season, so far.”
The LMI has remained in the mid to high 50s range since January—with the exception of April, when the index dipped to 52.9—signaling strong and consistent demand for warehousing and transportation services.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
"After several years of mitigating inflation, disruption, supply shocks, conflicts, and uncertainty, we are currently in a relative period of calm," John Paitek, vice president, GEP, said in a release. "But it is very much the calm before the coming storm. This report provides procurement and supply chain leaders with a prescriptive guide to weathering the gale force headwinds of protectionism, tariffs, trade wars, regulatory pressures, uncertainty, and the AI revolution that we will face in 2025."
A report from the company released today offers predictions and strategies for the upcoming year, organized into six major predictions in GEP’s “Outlook 2025: Procurement & Supply Chain.”
Advanced AI agents will play a key role in demand forecasting, risk monitoring, and supply chain optimization, shifting procurement's mandate from tactical to strategic. Companies should invest in the technology now to to streamline processes and enhance decision-making.
Expanded value metrics will drive decisions, as success will be measured by resilience, sustainability, and compliance… not just cost efficiency. Companies should communicate value beyond cost savings to stakeholders, and develop new KPIs.
Increasing regulatory demands will necessitate heightened supply chain transparency and accountability. So companies should strengthen supplier audits, adopt ESG tracking tools, and integrate compliance into strategic procurement decisions.
Widening tariffs and trade restrictions will force companies to reassess total cost of ownership (TCO) metrics to include geopolitical and environmental risks, as nearshoring and friendshoring attempt to balance resilience with cost.
Rising energy costs and regulatory demands will accelerate the shift to sustainable operations, pushing companies to invest in renewable energy and redesign supply chains to align with ESG commitments.
New tariffs could drive prices higher, just as inflation has come under control and interest rates are returning to near-zero levels. That means companies must continue to secure cost savings as their primary responsibility.
Specifically, 48% of respondents identified rising tariffs and trade barriers as their top concern, followed by supply chain disruptions at 45% and geopolitical instability at 41%. Moreover, tariffs and trade barriers ranked as the priority issue regardless of company size, as respondents at companies with less than 250 employees, 251-500, 501-1,000, 1,001-50,000 and 50,000+ employees all cited it as the most significant issue they are currently facing.
“Evolving tariffs and trade policies are one of a number of complex issues requiring organizations to build more resilience into their supply chains through compliance, technology and strategic planning,” Jackson Wood, Director, Industry Strategy at Descartes, said in a release. “With the potential for the incoming U.S. administration to impose new and additional tariffs on a wide variety of goods and countries of origin, U.S. importers may need to significantly re-engineer their sourcing strategies to mitigate potentially higher costs.”
Freight transportation providers and maritime port operators are bracing for rough business impacts if the incoming Trump Administration follows through on its pledge to impose a 25% tariff on Mexico and Canada and an additional 10% tariff on China, analysts say.
Industry contacts say they fear that such heavy fees could prompt importers to “pull forward” a massive surge of goods before the new administration is seated on January 20, and then quickly cut back again once the hefty new fees are instituted, according to a report from TD Cowen.
As a measure of the potential economic impact of that uncertain scenario, transport company stocks were mostly trading down yesterday following Donald Trump’s social media post on Monday night announcing the proposed new policy, TD Cowen said in a note to investors.
But an alternative impact of the tariff jump could be that it doesn’t happen at all, but is merely a threat intended to force other nations to the table to strike new deals on trade, immigration, or drug smuggling. “Trump is perfectly comfortable being a policy paradox and pushing competing policies (and people); this ‘chaos premium’ only increases his leverage in negotiations,” the firm said.
However, if that truly is the new administration’s strategy, it could backfire by sparking a tit-for-tat trade war that includes retaliatory tariffs by other countries on U.S. exports, other analysts said. “The additional tariffs on China that the incoming US administration plans to impose will add to restrictions on China-made products, driving up their prices and fueling an already-under-way surge in efforts to beat the tariffs by importing products before the inauguration,” Andrei Quinn-Barabanov, Senior Director – Supplier Risk Management solutions at Moody’s, said in a statement. “The Mexico and Canada tariffs may be an invitation to negotiations with the U.S. on immigration and other issues. If implemented, they would also be challenging to maintain, because the two nations can threaten the U.S. with significant retaliation and because of a likely pressure from the American business community that would be greatly affected by the costs and supply chain obstacles resulting from the tariffs.”
New tariffs could also damage sensitive supply chains by triggering unintended consequences, according to a report by Matt Lekstutis, Director at Efficio, a global procurement and supply chain procurement consultancy. “While ultimate tariff policy will likely be implemented to achieve specific US re-industrialization and other political objectives, the responses of various nations, companies and trading partners is not easily predicted and companies that even have little or no exposure to Mexico, China or Canada could be impacted. New tariffs may disrupt supply chains dependent on just in time deliveries as they adjust to new trade flows. This could affect all industries dependent on distribution and logistics providers and result in supply shortages,” Lekstutis said.