Pharmaceutical companies faced many challenges when it came to producing and distributing the new COVID-19 vaccines. One that received the most attention? The need to keep the new mRNA vaccines super cold during shipment and distribution.
Yossi Sheffi, Ph.D., is Elisha Gray II Professor of Engineering Systems at the Massachusetts Institute of Technology and Director of MIT's Center for Transportation and Logistics.
The race to deliver a COVID-19 vaccine has been likened to a moonshot, but in several ways landing a man on the moon was easier. In MIT Professor Yossi Sheffi’s new book, Shot in the Arm, he explores how science, engineering, and supply chain converged to vaccinate the world.
In Chapter 2, Sheffi recounts the many challenges that pharmaceutical companies faced as they sought to mass produce and distribute the approved vaccines to the entire world. These included: overcoming supply shortages for key ingredients and equipment; ramping up fast for production of hundreds of millions and then billions of doses; developing and implementing brand new manufacturing processes; and transporting supplies and finished product through a constrained global supply chain.
In this excerpt, Sheffi discusses the cold-chain innovations that companies created to respond to the challenge of transporting and storing the new mRNA vaccines at subzero temperatures. As Meri Stevens, a global supply chain leader in Johnson & Johnson’s consumer health business, told Sheffi in an interview about J&J’s vaccine, “Initially it was very much about the science and discovery, but very quickly we were having to create whole cold chains that didn’t exist before.”
A cold, hard challenge
“Ensuring over a billion people globally have access to our potential vaccine is as critical as developing the vaccine itself,” said Pfizer’s CEO [Albert] Bourla.1 Adding to the challenge of both the volume of shipments and the urgency of delivery was the need to properly handle the vials of vaccine while sending them to the far corners of the earth.
Whereas most vaccines require some refrigeration, the new mRNA vaccines require the most careful handling because of the delicate constitution of their lipid nanoparticles. Molecular biologist Phillip Sharp of MIT explained, “This is an oily particle with carbohydrate around it. So, it’s a pain to keep it from fusing. It’s just one big ball of oil if it’s not taken care of. That’s why all this shipping and freezing and thawing and everything is really very important.”2 Moderna’s vaccine requires freezing between –50°C and –15°C (–58°F and 5°F), and Pfizer’s requires ultra-low-temperature freezing between –80°C and –60°C (–112°F and –76°F). As a result, these vaccines require cold-chain handling: global distribution activities at very low and controlled temperatures.
The colder the temperature, the more challenging the cold-chain transportation and storage issues. In the case of the Pfizer vaccine’s deep-freeze needs, very few facilities—only a handful of pharmaceutical distribution centers, hospitals, and research laboratories—had the kinds of deep freezers needed. “I don’t think we have all the cold storage that people think we have,” commented James Bruno, president of the consulting firm Chemical and Pharmaceutical Solutions.3
Helping Shipments Keep Their Cool
As part of its development strategy, Pfizer began setting up its downstream supply chain for the finished product in March 2020—at the same time as the kick-off of its COVID vaccine development. Pfizer said it developed a “just-in-time system, which will ship the frozen vials direct to the point of vaccination.”4 That system included packaging for shipping, continuous monitoring of vaccine temperatures to ensure safety, and a means to store the vaccine for up to a month at clinics, vaccination centers, and distribution facilities that lacked deep freezers. These efforts used supply chain partners with respective expertise in cold-chain packaging and supply chain monitoring.
Pfizer worked with SoftBox, a multinational British manufacturer of temperature-controlled packaging, to develop a reusable insulated thermal shipping box5 that holds 1,200 to 6,000 doses. The box, measuring 17 x 17 x 22 inches, holds up to five small “pizza box” trays, each with 195 vials, in an inner payload sleeve box nestled deep in the heavily insulated outer box.6 On top of the precious cargo sits a “pod” with up to 50 pounds of dry ice at –109°F (-79°C). An insulated lid completes the cozy ensemble.
The result is a medium-sized, robust, 70- to 80-pound box (with side straps) that can be handled by any air or ground parcel delivery service. (Pfizer and SoftBox even designed the box to reduce the sublimation of the dry ice during flight, reducing the generation of potentially hazardous caron monoxide (CO) levels in air freighters and significantly increasing the number of doses that air-freighters were permitted to safely carry.)7
As an added bonus, this thermal container can maintain ultra-cold temperatures for up to 10 days. Moreover, if needed, the recipient can replenish the dry ice every five days to extend storage in the box for up to 30 days.8 That enables facilities that lack the required freezers to temporarily store, distribute, and dispense the vaccine. Finally, when needed, the vaccine is thawed and can be kept in an ordinary refrigerator for up to five days before dilution and injection.
A view to a chill
To maintain 24/7 visibility of shipments, Pfizer contracted with Controlant, a provider of real-time supply chain monitoring devices that go into shipping boxes.9 A small, battery-powered sensor tracks vaccine temperature, the opening of the box, and its GPS location. Using a standard cellular data connection, the sensor sends the information in real time to Controlant’s cloud-based software, where customers can receive alerts and view the information. When the box is opened, red-green status lights show the shipment’s temperature status, data connection status, and battery status. “Controlant’s reusable, real-time data loggers and visibility and analysis platform integrates with Pfizer’s existing control tower technologies,” said Tanya Alcorn, vice president of biopharma global supply chain at Pfizer, “to help manage temperature proactively, identify and react expeditiously to any events that can impact the supply chain, all while automating quality and logistics processes.”10
One tricky issue with the monitoring system occurred at the handoff when Pfizer delivered the doses to government distribution or vaccination centers. As the shipment left Pfizer’s hands, Pfizer turned the monitoring off for legal liability and practicality reasons; once delivered, Pfizer had no control over the status of the shipment or the means to make the recipient take a corrective action. But recipients wanted the ability to monitor the boxes too, especially if they planned to use them for interim storage by refilling the dry ice. Fortunately, because the monitoring device was actually made and monitored by a third party, Controlant, all any recipient had to do was to sign up with the tracking company to restart monitoring and route the data and alerts to the recipient.11
Getting ready to move ’em out
Pfizer bought large numbers of deep freezers to set up freezer farms to buffer and distribute the output of its production facilities in Michigan and Belgium. The company also built its own dry ice plant to make the freezing pods that keep the vaccines cold during transit. As of November 2020, Pfizer planned to have a fleet of 24 trucks to ferry shipments from Pfizer’s facilities to local airports, where a combination of air charter and air freight companies such as FedEx, UPS, and DHL could carry the vaccine anywhere in the world within a day or two. As the clinical results of the Phase 3 trials confirmed the efficacy of the Pfizer–BioNTech vaccine, Pfizer announced plans to move roughly 7.6 million doses per day.12
Similarly, airfreight companies and facilities prepared for the vaccine distribution campaign. UPS, for example, built its own freezer farms and dry-ice production equipment at key air hubs.13 Airports invested in additional security and cold storage.14 Airlines conducted trial runs of vaccine deliveries to both debug systems and ensure the CO emissions from the dry ice remained within Federal Aviation Administration (FAA)-required limits.15 In coordination with Operation Warp Speed, FedEx and UPS divided the U.S. in half to improve delivery efficiencies.16 The efforts were intended to ensure fast, efficient, and problem-free delivery of the vaccines once they were approved and started shipping.
The bigger picture of bigger demand
Overall, vaccine suppliers had to face and overcome a long list of challenges: Shortages began in the product development labs, moved into the ingredient supply chains, and then hit the packaging ends of vaccine development and production processes. Shortages also hit capital equipment supply chains as pharmaceutical makers attempted to ramp up their capacity. As the adage goes, supply chains are only as strong as their weakest links. Successfully delivering large quantities of a new product depends on delivering all of the required quantities of every one of the raw materials, ingredients, and all other parts in the bill of materials (BOM) of the final product, as well as all the plant equipment and machinery needed for manufacturing and delivering the product. Supply chains aren’t about doing one thing well; they are about doing every one of many things well, because final products and customer satisfaction depend on every one of those many things for a complete, high-quality product delivered on time.
Even the packaged final product—billions of doses of safe and effective vaccines—wasn’t the end of the challenge. Those vaccines still needed to get to the customers: all people in all the countries of the world. Although modern supply chains have become adept at quickly and accurately making and moving millions of shipments of consumer products per day anywhere in the world, actually getting those doses into people’s arms was a real challenge that tested national and local institutions.
11. Goldhill, Olivia. “Pfizer Decision to Turn Off Temperature Sensors Forced Scramble to Ensure COVID-19 Vaccines Kept Ultra-Cold.” Stat, December 17, 2020.
Companies in every sector are converting assets from fossil fuel to electric power in their push to reach net-zero energy targets and to reduce costs along the way, but to truly accelerate those efforts, they also need to improve electric energy efficiency, according to a study from technology consulting firm ABI Research.
In fact, boosting that efficiency could contribute fully 25% of the emissions reductions needed to reach net zero. And the pursuit of that goal will drive aggregated global investments in energy efficiency technologies to grow from $106 Billion in 2024 to $153 Billion in 2030, ABI said today in a report titled “The Role of Energy Efficiency in Reaching Net Zero Targets for Enterprises and Industries.”
ABI’s report divided the range of energy-efficiency-enhancing technologies and equipment into three industrial categories:
Commercial Buildings – Network Lighting Control (NLC) and occupancy sensing for automated lighting and heating; Artificial Intelligence (AI)-based energy management; heat-pumps and energy-efficient HVAC equipment; insulation technologies
Manufacturing Plants – Energy digital twins, factory automation, manufacturing process design and optimization software (PLM, MES, simulation); Electric Arc Furnaces (EAFs); energy efficient electric motors (compressors, fans, pumps)
“Both the International Energy Agency (IEA) and the United Nations Climate Change Conference (COP) continue to insist on the importance of energy efficiency,” Dominique Bonte, VP of End Markets and Verticals at ABI Research, said in a release. “At COP 29 in Dubai, it was agreed to commit to collectively double the global average annual rate of energy efficiency improvements from around 2% to over 4% every year until 2030, following recommendations from the IEA. This complements the EU’s Energy Efficiency First (EE1) Framework and the U.S. 2022 Inflation Reduction Act in which US$86 billion was earmarked for energy efficiency actions.”
Economic activity in the logistics industry expanded in November, continuing a steady growth pattern that began earlier this year and signaling a return to seasonality after several years of fluctuating conditions, according to the latest Logistics Managers’ Index report (LMI), released today.
The November LMI registered 58.4, down slightly from October’s reading of 58.9, which was the highest level in two years. The LMI is a monthly gauge of business conditions across warehousing and logistics markets; a reading above 50 indicates growth and a reading below 50 indicates contraction.
“The overall index has been very consistent in the past three months, with readings of 58.6, 58.9, and 58.4,” LMI analyst Zac Rogers, associate professor of supply chain management at Colorado State University, wrote in the November LMI report. “This plateau is slightly higher than a similar plateau of consistency earlier in the year when May to August saw four readings between 55.3 and 56.4. Seasonally speaking, it is consistent that this later year run of readings would be the highest all year.”
Separately, Rogers said the end-of-year growth reflects the return to a healthy holiday peak, which started when inventory levels expanded in late summer and early fall as retailers began stocking up to meet consumer demand. Pandemic-driven shifts in consumer buying behavior, inflation, and economic uncertainty contributed to volatile peak season conditions over the past four years, with the LMI swinging from record-high growth in late 2020 and 2021 to slower growth in 2022 and contraction in 2023.
“The LMI contracted at this time a year ago, so basically [there was] no peak season,” Rogers said, citing inflation as a drag on demand. “To have a normal November … [really] for the first time in five years, justifies what we’ve seen all these companies doing—building up inventory in a sustainable, seasonal way.
“Based on what we’re seeing, a lot of supply chains called it right and were ready for healthy holiday season, so far.”
The LMI has remained in the mid to high 50s range since January—with the exception of April, when the index dipped to 52.9—signaling strong and consistent demand for warehousing and transportation services.
The LMI is a monthly survey of logistics managers from across the country. It tracks industry growth overall and across eight areas: inventory levels and costs; warehousing capacity, utilization, and prices; and transportation capacity, utilization, and prices. The report is released monthly by researchers from Arizona State University, Colorado State University, Rochester Institute of Technology, Rutgers University, and the University of Nevada, Reno, in conjunction with the Council of Supply Chain Management Professionals (CSCMP).
"After several years of mitigating inflation, disruption, supply shocks, conflicts, and uncertainty, we are currently in a relative period of calm," John Paitek, vice president, GEP, said in a release. "But it is very much the calm before the coming storm. This report provides procurement and supply chain leaders with a prescriptive guide to weathering the gale force headwinds of protectionism, tariffs, trade wars, regulatory pressures, uncertainty, and the AI revolution that we will face in 2025."
A report from the company released today offers predictions and strategies for the upcoming year, organized into six major predictions in GEP’s “Outlook 2025: Procurement & Supply Chain.”
Advanced AI agents will play a key role in demand forecasting, risk monitoring, and supply chain optimization, shifting procurement's mandate from tactical to strategic. Companies should invest in the technology now to to streamline processes and enhance decision-making.
Expanded value metrics will drive decisions, as success will be measured by resilience, sustainability, and compliance… not just cost efficiency. Companies should communicate value beyond cost savings to stakeholders, and develop new KPIs.
Increasing regulatory demands will necessitate heightened supply chain transparency and accountability. So companies should strengthen supplier audits, adopt ESG tracking tools, and integrate compliance into strategic procurement decisions.
Widening tariffs and trade restrictions will force companies to reassess total cost of ownership (TCO) metrics to include geopolitical and environmental risks, as nearshoring and friendshoring attempt to balance resilience with cost.
Rising energy costs and regulatory demands will accelerate the shift to sustainable operations, pushing companies to invest in renewable energy and redesign supply chains to align with ESG commitments.
New tariffs could drive prices higher, just as inflation has come under control and interest rates are returning to near-zero levels. That means companies must continue to secure cost savings as their primary responsibility.
Specifically, 48% of respondents identified rising tariffs and trade barriers as their top concern, followed by supply chain disruptions at 45% and geopolitical instability at 41%. Moreover, tariffs and trade barriers ranked as the priority issue regardless of company size, as respondents at companies with less than 250 employees, 251-500, 501-1,000, 1,001-50,000 and 50,000+ employees all cited it as the most significant issue they are currently facing.
“Evolving tariffs and trade policies are one of a number of complex issues requiring organizations to build more resilience into their supply chains through compliance, technology and strategic planning,” Jackson Wood, Director, Industry Strategy at Descartes, said in a release. “With the potential for the incoming U.S. administration to impose new and additional tariffs on a wide variety of goods and countries of origin, U.S. importers may need to significantly re-engineer their sourcing strategies to mitigate potentially higher costs.”
Freight transportation providers and maritime port operators are bracing for rough business impacts if the incoming Trump Administration follows through on its pledge to impose a 25% tariff on Mexico and Canada and an additional 10% tariff on China, analysts say.
Industry contacts say they fear that such heavy fees could prompt importers to “pull forward” a massive surge of goods before the new administration is seated on January 20, and then quickly cut back again once the hefty new fees are instituted, according to a report from TD Cowen.
As a measure of the potential economic impact of that uncertain scenario, transport company stocks were mostly trading down yesterday following Donald Trump’s social media post on Monday night announcing the proposed new policy, TD Cowen said in a note to investors.
But an alternative impact of the tariff jump could be that it doesn’t happen at all, but is merely a threat intended to force other nations to the table to strike new deals on trade, immigration, or drug smuggling. “Trump is perfectly comfortable being a policy paradox and pushing competing policies (and people); this ‘chaos premium’ only increases his leverage in negotiations,” the firm said.
However, if that truly is the new administration’s strategy, it could backfire by sparking a tit-for-tat trade war that includes retaliatory tariffs by other countries on U.S. exports, other analysts said. “The additional tariffs on China that the incoming US administration plans to impose will add to restrictions on China-made products, driving up their prices and fueling an already-under-way surge in efforts to beat the tariffs by importing products before the inauguration,” Andrei Quinn-Barabanov, Senior Director – Supplier Risk Management solutions at Moody’s, said in a statement. “The Mexico and Canada tariffs may be an invitation to negotiations with the U.S. on immigration and other issues. If implemented, they would also be challenging to maintain, because the two nations can threaten the U.S. with significant retaliation and because of a likely pressure from the American business community that would be greatly affected by the costs and supply chain obstacles resulting from the tariffs.”
New tariffs could also damage sensitive supply chains by triggering unintended consequences, according to a report by Matt Lekstutis, Director at Efficio, a global procurement and supply chain procurement consultancy. “While ultimate tariff policy will likely be implemented to achieve specific US re-industrialization and other political objectives, the responses of various nations, companies and trading partners is not easily predicted and companies that even have little or no exposure to Mexico, China or Canada could be impacted. New tariffs may disrupt supply chains dependent on just in time deliveries as they adjust to new trade flows. This could affect all industries dependent on distribution and logistics providers and result in supply shortages,” Lekstutis said.